Abstract

The objective of this study is to investigate the use of an alternative working pair in a solar absorption cooling system. LiCl-H2O is the new examined pair and it is compared energetically and exegetically with the conventional pair LiBr-H2O, which is the most usual in air-conditioning applications. The simplest solar cooling system is analyzed in order to focus in the comparison between these working fluids. Specifically, flat plate collectors, coupled with a storage tank, feed the single effect absorption chiller which produces 250kW cooling at 10°C. The two pairs are examined parametrically for various heat source temperature levels and for three ambient temperature levels (25°C, 30°C and 35°C). The minimization of the collecting area, which means maximum exergetic efficiency, is the optimization goal in every case. The final results show that LiCl-H2O pair performs better in all cases by giving greater exergetic efficiency. More specifically, about 8% lower collecting area is required to cover the demanded cooling load with this working pair. Another interesting result is that the optimum heat source temperature for the LiCl-H2O is roughly lower than the respective for the LiBr-H2O. The system is analyzed in steady state with the commercial software Engineering Equator Solver (EES).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.