Abstract

It has been suggested that there are separate insulin-stimulated and contraction-stimulated glucose transport pathways in skeletal muscle. This study examined the effects of nitric oxide on glucose transport in rat skeletal muscle by use of an isolated sarcolemmal membrane preparation and the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME), administered in the drinking water (1 mg/ml). Female Sprague-Dawley rats were divided into five groups: control, acute exercise, acute exercise+L-NAME, insulin stimulated, and insulin stimulated+L-NAME. Exercise (45 min of exhaustive treadmill running) increased glucose transport (37 +/- 2 to 76 +/- 5 pmol.mg-1.15 s-1) and this increase was completely inhibited by L-NAME (40 +/- 4 pmol.mg-1.15 s-1). A maximum dose of insulin increased glucose transport (87 +/- 10 pmol.mg-1.15 s-1), and adding L-NAME had no effect (87 +/- 11 pmol.mg-1.15 s-1). In addition, exercise, but not exercise+L-NAME, increased sarcolemma GLUT-4 content. This study confirms that there are separate pathways for contraction- and insulin-stimulated glucose transport. More importantly, although exercise and insulin both significantly increased glucose transport, L-NAME had no effect on insulin-stimulated glucose transport but blocked the exercise-stimulated transport. We conclude that nitric oxide is involved in the signal transduction mechanism to increase glucose transport during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.