Abstract

We tested the hypothesis that exercise training (Ex) attenuates the effects of hyperlipidemia on endothelial function by enhancing NO-mediated vasorelaxation in porcine brachial (Br) arteries. Adult female pigs were fed a normal-fat (NF) or high-fat (HF) diet for 20 wk. Four weeks after initiation of the diet, pigs underwent Ex or remained sedentary (Sed) for 16 wk. Relaxation to ACh was impaired by HF (P = 0.03). The combination of HF and Sed impaired ACh-induced relaxation more than HF or Sed alone (P = 0.0002). Relaxation to high doses of bradykinin (BK) was impaired by HF (P = 0.0002). Ex significantly improved ACh-induced relaxation (P = 0.01) and tended to improve relaxation to BK (P = 0.38). To determine the mechanism(s) by which HF and Ex affected relaxation to ACh and BK, relaxation was assessed in the presence of N(G)-nitro-l-arginine methyl ester (l-NAME; to inhibit NO synthase), indomethacin (Indo; to inhibit cyclooxygenase), or l-NAME + Indo. In the presence of l-NAME, Indo, or l-NAME + Indo, ACh-induced relaxation was no longer different between HF and NF arteries; however, relaxation remained greater in Ex than in Sed arteries. In the presence of l-NAME or Indo, BK-induced relaxation was no longer altered by HF but was enhanced by Ex. In the presence of l-NAME + Indo, BK-induced relaxation was enhanced by HF and Ex. These data indicate that hyperlipidemia impairs ACh- and BK-induced relaxation by impairing NO- and PGI(2)-mediated relaxation. Ex attenuates the effects of HF by enhancing a vasodilator mechanism independent of NO and PGI(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.