Abstract
The metabolism and time courses for clearance of radiolabeled estradiol and testosterone were studied in the female cockatiel (Nymphicus hollandicus) using a simple technique of solubilizing dried fecal/urine matter in an aqueous solution. Carbon 14 radiolabeled estradiol and testosterone were injected intramuscularly and the urine and fecal matter collected for the pursuant 168 hr. The predominant radiolabel peak was found associated with the aqueous residue of the ether extracted aliquot for both hormones. High-performance liquid chromatographic (HPLC) separation of solubilized fecal/urine material collected during the first sampling interval (0–4 hr after injection) demonstrated that the majority of the excreted radiolabel was in the form of conjugated steroid metabolites in both the estradiol and testosterone injected birds. Subsequent hydrolysis of the aqueous residue of the ether extracted aliquots and HPLC characterized the estrogen and testosterone metabolites as being estrone/estradiol and a variety of androgen based moieties, respectively. By 24 hr postinjection, 79.4 and 79.1% of the original radiolabel was recovered in birds injected with estradiol and testosterone, respectively. These findings demonstrate that steroid hormone excretion in the cockatiel is a rapid and efficient process that is 79% complete by 24 hr and that the primary excretion products are conjugated metabolites. This study also supports the concept that fecal/urine collection is a practical and efficient method of monitoring sex steroid excretion and provides additional evidence that simple solubilization of fecal matter is a sufficient and efficient method for processing feces for subsequent metabolite measurements. Zoo Biol 16:505–518, 1997. © 1997 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.