Abstract

We study exclusion statistics within the second quantized approach. We consider operator algebras with positive definite Fock space and restrict them in a such a way that certain state vectors in Fock space are forbidden ab initio.We describe three characteristic examples of such exclusion, namely exclusion on the base space which is characterized by states with specific constraint on quantum numbers belonging to base space M (e.g. Calogero-Sutherland type of exclusion statistics), exclusion in the single-oscillator Fock space, where some states in single oscillator Fock space are forbidden (e.g. the Gentile realization of exclusion statistics) and a combination of these two exclusions (e.g. Green's realization of para-Fermi statistics). For these types of exclusions we discuss extended Haldane statistics parameters g, recently introduced by two of us in Mod.Phys.Lett.A 11, 3081 (1996), and associated counting rules. Within these three types of exclusions in Fock space the original Haldane exclusion statistics cannot be realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.