Abstract
We present a study of the lowest surface and bulk excitations of the well-studied potassium bromide (KBr) system using an embedded cluster method. The excited states of the embedded cluster are studied systematically using time-dependent density functional theory (TDDFT) and high-level equation-of-motion coupled cluster (EOMCC) methods. In particular, we have used EOMCC models with singles and doubles (EOMCCSD) and two approaches which account for the effect of triply excited configurations in non-iterative and iterative fashions. We compare and contrast the results between these theories as well as compare our results with experiment. The bulk–surface exciton shift is also calculated at the TDDFT level and compared with experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.