Abstract
The theory for analytic energy derivatives of excited electronic states described by the equation-of-motion coupled cluster (EOM-CC) method has been generalized to treat cases in which reference and final states differ in the number of electrons. While this work specializes to the sector of Fock space that corresponds to ionization of the reference, the approach can be trivially modified for electron attached final states. Unlike traditional coupled cluster methods that are based on single determinant reference functions, several electronic configurations are treated in a balanced way by EOM-CC. Therefore, this quantum chemical approach is appropriate for problems that involve important nondynamic electron correlation effects. Furthermore, a fully spin adapted treatment of doublet electronic states is guaranteed when a spin restricted closed shell reference state is used—a desirable feature that is not easily achieved in standard coupled cluster approaches. The efficient implementation of analytic gradients reported here allows this variant of EOM-CC theory to be routinely applied to multidimensional potential energy surfaces for the first time. Use of the method is illustrated by an investigation of the formyloxyl radical (HCOO), which suffers from notorious symmetry breaking effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.