Abstract

Narrow graphene nanoribbons (GNRs) exhibit electronic and optical properties that are not present in extended graphene. Most importantly, they possess band gaps in the order of a few electron volts, which has been subject to numerous studies. Here we report on the experimental observation of exctionic states in the band gap of N = 7 armchair GNRs (7-GNR) on Au(111) and Au(788) using energy- and angle-resolved two-photon photoemission spectroscopy. Thereby, an exciton binding energy in the 7-GNR on Au(111) of 160 ± 60 meV has been determined. On the stepped Au(788) surface, the exciton binding energy is in the same range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.