Abstract
The thermoelectric properties of armchair graphene nanoribbons (AGNRs) with array characteristics are investigated theoretically using the tight-binding model and Green's function technique. The AGNR structures with array characteristics are created by embedding a narrow boron nitride nanoribbon (BNNR) into a wider AGNR, resulting in two narrow AGNRs. This system is denoted as w-AGNR/n-BNNR, where 'w' and 'n' represent the widths of the wider AGNR and narrow BNNR, respectively. We elucidate the coupling effect between two narrow symmetrical AGNRs on the electronic structure of w-AGNR/i-BNNR. A notable discovery is that the power factor of the 15-AGNR/5-BNNR with the minimum width surpasses the quantum limitation of power factor for 1D ideal systems. The energy level degeneracy observed in the first subbands of w-AGNR/n-BNNR structures proves to be highly advantageous in enhancing the electrical power outputs of graphene nanoribbon devices.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.