Abstract
Excitons consist of electrons and holes held together by their attractive Coulomb interaction. Although excitons are neutral excitations, spatial fluctuations in their charge density couple with the ions of the crystal lattice. This coupling can lower the exciton energy and lead to the formation of a localized excitonic polaron or even a self-trapped exciton in the presence of strong exciton-phonon interactions. Here, we develop a theoretical and computational approach to compute excitonic polarons and self-trapped excitons from first principles. Our methodology combines the many-body Bethe-Salpeter approach with density-functional perturbation theory and does not require explicit supercell calculations. As a proof of concept, we demonstrate our method for a compound of the halide perovskite family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.