Abstract

A tight binding model is introduced to describe the strong interaction limit of excitonic ordering. At stoichiometry, the model reduces in the strong coupling limit to a pseudo-spin model with approximate U(4) symmetry. Excitonic order appears in the pseudo-spin model as in-plane pseudo-magnetism. The U(4) symmetry unifies all possible singlet and triplet order parameters describing such states. Super-exchange, Hunds-rule coupling, and other perturbations act as anisotropies splitting the U(4) manifold, ultimately stabilizing a paramagnetic triplet state. The tendency to ferromagnetism with doping (observed experimentally in the hexaborides) is explained as a spin-flop transition to a different orientation of the U(4) order parameter. The physical mechanism favoring such a reorientation is the enhanced coherence (and hence lower kinetic energy) of the doped electrons in a ferromagnetic background relative to the paramagnet. A discussion of the physical meaning of various excitonic states and their experimental consequences is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.