Abstract
A theoretical model of exciton dynamics in circular molecular aggregates of light-harvesting bacteriochlorophyll of photosynthetic bacteria is proposed. The spectra and anisotropy of photoinduced absorption changes in the femto- and picosecond time domain are under its scope. The excited state of aggregate was treated due to the standard exciton theory, taking into account a pigment inhomogeneity. Dephasing processes via the exciton-phonon interactions were described by means of the Haken-Strobl equation. It was shown that only two exciton levels are dipole-allowed in the case of homogeneous circular aggregate. The pigment inhomogeneity results in the appearance of several weak transitions to higher exciton levels. It was proposed that the minor band (B896) in an absorption spectrum of the B875 complex as well as the similar minor band in spectra of B800-850 complex correspond to electron transition from the ground to the lowest exciton level, whereas the major band corresponds to transition to the higher exciton level. The proposed model shows the subpicosecond decay of anisotropy at the short-wavelength side of absorption band and a high degree of anisotropy at the long-wavelength side, even at high temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.