Abstract
ABSTRACTA survey of the literature shows that reverse bias current IL of an illuminated conducting polymer Schottky diode increases with voltage. We suggest that this increase in IL with applied reverse bias is due to a combination of two factors: (1) increase of mobility, and (2) dissociation of excitons. The experimental results agree with the values of IL calculated using either of the two mechanisms. Therefore it is difficult to determine the relative importance of the two mechanisms. The relative importance can be determined only if reliable values of material parameters are available. We have fabricated Schottky diodes and FETs using 5-ring n-octyloxy-substituted oligo[p-phenylene vinylene](Ooct-OPV5) and C60. The mobility of the oligomer derived from the measured characteristics of the diode is 3.29×10−7cm2/Vs and from the FET data, 3.24 × 10−4 cm2/Vs. These results show that the mobility (and other material parameters) depend strongly on the structure of the device. Therefore for interpreting the IL data it is important to measure the material parameters on the same structure on which IL measurements are made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.