Abstract

Dynamic light scattering of fullerenol solutions [C60(OH)18] reveals evidence for the formation of fullerene aggregates at high solute concentration (up to 3.85×10-2 mol dm-3). This hydrophilic fullerene derivative emits very weak fluorescence regardless of its concentration. Photolysis (35 ps; λex=355 nm) of C60(OH)18 in aqueous solution yields the immediate formation of a transient singlet excited state with broad absorption in the 550–800 nm region with ε670nm=2130 d mol-1 cm-1. The energetically higher-lying singlet excited state transforms via intersystem crossing (i.e., with τ1/2=500 ps) to the also broadly absorbing (550–800 nm), triplet excited state. In contrast, at low solute concentration, the features of the (*T1→*Tn) absorption differ significantly exhibiting an absorption maximum at 650 nm concomitant to a shoulder at 570 nm. The π-radical anion of fullerenol, [C60(OH)18]-, generated by electron transfer from hydrated electrons and (CH3)2C(OH) radicals, absorbs with λmax at 870, 980 and 1050 nm. Based on electron transfer studies with suitable electron donor/acceptor substrates, the reduction potential of the C60(OH)18/[C60(OH)18]-couple was estimated to be in the range between -0.358 and -0.465 V vs. NHE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call