Abstract

By harnessing the power of coordination self-assembly, crystalline materials can act as carriers for photoacids. Unlike their solution-based counterparts, these photoacids are capable of altering the properties of the crystalline material under light and can even generate proton transfer in a solid-state environment. Due to the photoinduced proton transfer and charge transfer processes within this functional material, this crystal exhibits powerful absorption spanning the visible to near-infrared spectrum upon light irradiation. This feature enables reproducible, significant chromatic variation, near-infrared photothermal conversion, and photocontrollable conductivity for this photoresponsive material. The findings suggest that the synthesis of pyranine photoacid-based crystalline materials via coordination self-assembly can not only enhance light-harvesting efficiency but also enable excited-state proton transfer processes within solid crystalline materials, thereby maintaining and even improving the properties of photoacids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call