Abstract

Photoinduced electron spin polarization (ESP) is reported in the ground state of a series of complexes consisting of an organic radical (nitronylnitroxide, NN) covalently attached to a donor-acceptor chromophore either directly or via para-phenylene bridges substituted with 0-4 methyl groups. These molecules represent a class of chromophores that undergo visible light excitation to produce an initial exchange-coupled, three-spin [bpy•-, CAT•+ (= semiquinone, SQ) and NN•], charge-separated doublet 2S1 (S = chromophore spin singlet configuration) excited state that rapidly decays by magnetic exchange-enhanced internal conversion to a 2T1 (T = chromophore excited spin triplet configuration) state. The 2T1 state equilibrates with chromophoric and NN radical-derived excited states, resulting in absorptive ESP of the recovered ground state, which persists for greater than a millisecond and can be measured by low-temperature time-resolved electron paramagnetic resonance spectroscopy. The magnitude of the ground state ESP is found to correlate with the excited state magnetic exchange interaction between the CAT+• and NN• radicals, which in turn is controlled by the structure of the bridge fragment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call