Abstract

One of the most widely studied model systems for excited-state proton transfer (ESPT) is the 2-(2'-hydroxyphenyl)benzothiazole (HBT) molecule. This compound undergoes ultrafast ESPT followed by internal conversion to return to the ground state. In the present work, we simulate the nonadiabatic photochemistry of HBT using ab initio multiple spawning (AIMS) nuclear dynamics and a complete active space configuration interaction (CASCI) method in conjunction with wave function-in-DFT embedding to obtain ground- and excited-state potential surfaces on-the-fly. Our simulation predicts ultrafast ESPT with a time constant of 48-54 fs and an excited-state lifetime of 1.7-1.8 ps. Following proton transfer, HBT becomes trapped in a metastable keto structure on the S1 state. Eventually, the molecule begins to twist and proceeds toward a seam of intersection with the ground state where internal conversion is highly efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.