Abstract

We present computer simulations of excited state dynamics in models of PS I and PS II which are based upon known structural and spectral properties of the antennae. In particular, these models constrain the pigment binding sites to three-dimensional volumes determined from molecular properties of the antenna complexes. The simulations demonstrate that within a 10-30 ps after light absorption, rapid energy transfer among coupled antenna chlorophylls leads to a quasiequilibrium state in which the fraction of the excited state on any antenna chlorophyll, normalized to the total excited state remaining on the model, remains constant with time. We describe this quasiequilibrium state as a "transfer equilibrium" (TE) state because of its dependence on the rates of processes that couple excited state motion and quenching in the antenna as well as on the individual antenna site energies and temperature. The TE state is not a true equilibrium in that loss of the excited state primarily due to photochemistry (but also due to fluorescence, thermal emission, and intersystem crossing) continues once TE is established. Depending on the dynamics of the system, the normalized distribution of excited state at TE may differ substantially from the Boltzmann distribution (the state of the model at infinite time in the absence of any avenues for decay of excited state). The models predict lifetimes, equilibration times, and photochemical yields that are in agreement with experimental data and affirm trap-limited dynamics in both photosystems. The rapid occurrence of TE states implies that any excited state dynamics that depends on antenna structure and excitation wavelength must occur before the TE state is established. We demonstrate that the excited state distribution of the TE state is central to determining the excited state lifetime and quantum efficiency of photochemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.