Abstract

The complex neuronal networks of the spinal cord coordinate a wide variety of motor functions, including walking, running, and voluntary and involuntary movements. This is accomplished by different groups of neurons, called center pattern generators, which control left-right alternation and flexor-extensor patterns. These spinal circuits, located in the ventral horns, are formed by several neuronal types, and the specific function of most of them has been identified by means of studies in vivo and in the isolated spinal cord of mice harboring genetically induced ablation of specific neuronal populations. These studies have shown that the coordinated activity of several interneuron types, mainly GABAergic and glycinergic inhibitory neurons, have a crucial role in the modulation of motor neurons activity that finally excites the corresponding muscles. A pharmacological experimental approach by administering in the spinal cord agonists and antagonists of glutamate, GABA, glycine, and acetylcholine receptors to alter their synaptic action has also produced important results, linking the deficits in the synaptic function with the resulting motor alterations. These results have also increased the knowledge of the mechanisms of motor neuron degeneration, which is characteristic of diseases such as amyotrophic lateral sclerosis, and therefore open the possibility of designing new strategies for the prevention and treatment of these diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call