Abstract

The excitation wavelength dependence of the initial electron transfer rate in both wild type and mutant reaction centers from Rhodobacter sphaeroides has been studied between 840 and 920 nm as a function of temperature (10-295 K). The dynamics of primary charge separation show no resolvable excitation wavelength dependence at room temperature over this spectral range. A small variation in rate with excitation wavelength is observed at cryogenic temperatures. The low temperature results cannot be explained in terms either of a nonequilibrium model that assumes that the primary charge separation starts from a vibrationally hot state or a model that assumes a static inhomogeneous distribution of electron transfer driving forces. Instead these results are consistent with the concept that primary charge separation kinetics are controlled by the dynamics of protein conformational diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.