Abstract

The histidine ligand of the monomer bacteriochlorophyll molecule on the active side (BA) of the photosynthetic reaction center from Rhodobacter sphaeroides was mutated to a number of other amino acids. Histidine (H) at the position L153 was replaced with aspartic acid (D), glutamic acid (E), glutamine (Q), glycine (G), leucine (L), phenylalanine (F), serine (S), valine (V) and tyrosine (Y). These mutations were created to investigate how the alteration of the ligand residue affects the properties of the BA molecule and changes the dynamics of the primary charge separation in reaction centers. In all of the mutants, the changes in the ligand result in a blue-shift of the BA absorption spectrum, in both visible and near-infrared spectral regions, with the size of the shift varying between mutants. The primary electron transfer time constants in these mutant reaction centers range from 4.5 to 18 ps, being substantially slower than the wild-type value of 3 ps. The decrease in the electron transfer rate is interpreted as being due to an increase in the free energy of the initial charge-separated state P+BA−.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call