Abstract
The presence of plasmonic Fano-like resonances in the optical response of isolated and dimer metal-dielectric-metal nanostructures are investigated theoretically. The nanostructures are engineered in such a way to support multiple Fano-like resonances that are induced by the interference of bright and dark plasmon modes. It is found that the dimer resonators exhibit different types of Fano resonances for both the transverse and longitudinal polarizations unlike conventional nanodimers. Several configurations of the dimer Fano resonator are analyzed with special emphasis on the Fano spectral line shape. Breaking the symmetry of the dimer nanostructure in various directions control the asymmetric line shape and provides different kinds of unique Fano resonances. In certain cases, the Fano resonators exhibit multiple Fano resonances that are particularly significant for plasmon line shaping and can serve as platforms for multi-wavelength sensing applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have