Abstract
Excitation mechanisms in Li+–He collisions were studied at laboratory collision energies of 350 ≤ Elab ≤ 2000 eV by measuring double differential cross sections (DCSs) σ(Θ)k over a wide range of center-of-mass scattering angles, 2.5 ≤ Θ ≤ 175°. At Elab ≥ 500 eV, two-electron (2e) excitations were observed as well as one-electron (1e) excitations. At the higher collision energies, excitation probabilities P(Θ)k for the 1e and 2e excitations have characteristic angular dependences, i.e., at Elab = 1500 and 2000 eV, P(Θ)1e for the 1e excitations has double maxima around Θ = 20 and 120° and P(Θ)2e for the 2e excitations has a broad maximum around Θ = 60°. As a first analysis of the experimental data, P(Θ)k, σ(Θ)k, and the integral cross sections Sk(Elab) were calculated by assuming excitations from the 11Σ state into the 11Π and 11Δ states through rotational couplings using the model potentials and couplings. As the next step, ab initio potential energies for the ground and excited states were calculated by a...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have