Abstract

To understand the mode of energy transport in branched dendritic macromolecules, the optical excitation of a dendritic core (A-DSB) at low temperature (4.2 K) was investigated. Fluorescence depolarization measurements were utilized to probe the energy-transfer processes in the branching center at several different temperatures. We found that the anisotropy decay shows an interesting trend at low temperature where depolarization times decreased and the residual anisotropy value also decreased with decreasing temperature. The very fast anisotropy decay suggests a coherent mechanism of energy transport in these systems at low temperature. The contribution of inhomogeneous broadening is suggested as an important factor in the temperature dependence of the anisotropy decay and residual value. The change in inhomogeneous linewidth is responsible for this type of anisotropy behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.