Abstract
Low energy physics of quasi-one-dimensional ultracold atomic gases is often described by a gapless Luttinger liquid (LL). It is nowadays routine to manipulate these systems by changing their parameters in time but, no matter how slow the manipulation is, it must excite a gapless system. We study a smooth change of parameters of the LL (a smooth "quench") with a variable quench time and find that the excitation energy decays with an inverse power of the quench time. This universal exponent is -2 at zero temperature, and -1 for slow enough quenches at finite temperature. The smooth quench does not excite beyond the range of validity of the low energy LL description.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.