Abstract

Reversible oxygen induced emission quenching of both the Spontaneous Emission (SE) and the Amplified Spontaneous Emission (ASE) of poly(9,9-dioctylfluorene) waveguides is demonstrated. We show that ASE shows a stronger quenching than SE, up to about 6.2 times, but also a stronger decrease when the excitation density increases. We conclude that the fast increase of the ASE decay rate is the main process in determining the ASE detection sensitivity, limiting the potentiality of sensitivity improvement of ASE with respect to SE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.