Abstract

The paper presents a new universal formulation of electromagnetic fields in microwave ferrite-dielectric waveguiding structures from the given magnetic field distribution of an external source. The solution is derived from the linearized Landau-Lifshits equation using an orthogonality condition for eigenwaves of a magnetization. The magnetization excited in ferrite is obtained in an electrodynamic, magnetostatic or dipole-exchange approximation, depending on the approximation used for eigenwaves. Results are applied for the formulation and the analytical solution of self-consistent electrodynamic problems of an excitation and a reception of waves in ferrite films by transmission lines of an arbitrary type. Numerical calculations are performed for filters and delay lines on the base of symmetric strip-lines using surface and forward volume magnetostatic waves in ferrite films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.