Abstract

The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now frequently incorporated into TADF molecular structures to enhance these properties by increased spin-orbit coupling [spin orbit coupling (SOC)] between the T and S states. Here a series of donor-acceptor (D-A) molecules based on 12H-benzo[4,5]thieno[2,3-a]carbazole and dicyanopyridine is compared with their nonsulfur control molecules designed to probe such SOC effects. We reveal that unexpected intermolecular interactions of the D-A molecules with carbazole-containing host materials instead serve as the dominant pathway for triplet decay kinetics in these materials. In-depth photophysical and computational studies combined with organic light emitting diode measurements demonstrate that the anticipated heavy-atom effect from sulfur is overshadowed by exciplex formation. Indeed, even the unsubstituted acceptor fragments exhibit pronounced TADF exciplex emission in appropriate carbazole hosts. The intermolecular charge transfer and TADF in these systems are further confirmed by detailed time-dependent density functional theory studies. This work demonstrates that anticipated heavy-atom effects in TADF emitters do not always control or even impact the photophysical and electroluminescence properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.