Abstract
Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe3+>Al3+>Cu2+>>Ca2+>K+>Na+, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na+-smectite and K+-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe3+, Al3+, and Cu2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2− , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.