Abstract
We investigate the interaction of laser pulses carrying orbital angular momentum (OAM) with a symmetry-broken ladder-type quantum coupling scheme involving three internal states. A weak probe beam acts on the lower leg of the ladder scheme, while a control beam of higher intensity drives the upper leg. In contrast to natural atoms, such a model with broken symmetry allows generating a sum-frequency signal beam between the most upper and lower quantum states, forming a cyclic closed-loop configuration of light-matter interaction. We propose situations for the efficient transfer of optical vortices to the generated signal beam via a nonlinear three-wave mixing process. It is demonstrated that the exchange process can occur both in the electromagnetically induced transparency (EIT) and the Autler-Townes splitting (ATS) regimes. The transition between the EIT and ATS conversion schemes can smoothly happen by simply tuning the knob of the control field. It is shown that the ATS regime is considerably more favorable than the EIT to achieve maximum energy conversion efficiency between light beams carrying the OAM. The results may provide an applications-based perspective to the ongoing research centered on vortex conversion-based comparisons between the ATS and EIT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.