Abstract
The steady, coaxial flow in which two immiscible, incompressible fluids of differing densities move past each other slowly in a vertical cylindrical tube has a continuum of possibilities due to the arbitrariness of the interface between the fluids. By invoking the presence of surface tension to at least restrict the shape of any interface to that of a circular arc or full circle, we consider the following question: which flow will maximise the exchange when there is only one dividing interface Γ? Surprisingly, the answer differs fundamentally from the better-known co-directional two-phase flow situation where an axisymmetric (concentric) core-annular solution always optimises the flux. Instead, the maximal flux state is invariably asymmetric either being a ‘side-by-side’ configuration where Γ starts and finishes at the tube wall or an eccentric core-annular flow where Γ is an off-centre full circle in which the more viscous fluid is surrounded by the less viscous fluid. The side-by-side solution is the most efficient exchanger for a small viscosity ratio β ≲ 4.60 with an eccentric core-annular solution optimal otherwise. At large β, this eccentric solution provides 51% more flux than the axisymmetric core-annular flow which is always a local minimiser of the flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.