Abstract

Measurements of fully differential cross sections for electron impact ionization of atoms have been performed for over 30 years. However, only within the last ten years has agreement between experiment and theory been achieved for ionization of hydrogen and helium. For the heavier inert gases, reasonably good agreement between experiment and theory has only been achieved for high incident energies while serious discrepancies are common for intermediate and low incident energies. It is believed that a major source of the problem stems from an improper/inadequate treatment of exchange distortion (ED) and the effects of post-collision interactions (PCIs). In this paper, two different methods for including ED are examined---one based upon the $R$ matrix (close-coupling) approach and one originating from the single-configuration Hartree-Fock approach. In general, these two methods predict significant, but different, ED effects. The importance of PCI is studied by including the final-state Coulomb interaction directly in the final-state wave function. This procedure guarantees that PCI effects will be included to all orders of perturbation theory. For intermediate energies, PCI is an important effect and leads to an overall improvement in the agreement between experiment and theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call