Abstract
A number of recently developed methods for calculating multifold differential cross sections for photoionization and electron impact ionization of atoms and molecules with two active electrons are reviewed. The methods are based on unique approaches to the calculation of three-body Coulomb wave functions. The exterior scaling method and the driven Schrodinger equation formalism are considered. The effectiveness of the time-dependent approaches to the scattering problem, such as the paraxial approximation and the time-dependent scaling, is demonstrated. A novel numerical method is formulated, which has been developed by the authors to solve the six-dimensional Schrodinger equation for an atom with two active electrons on the basis of the Chang-Fano transformation and the discrete variable representation. The threshold behavior manifested by the angular distributions of the two-electron photoionization of a negative hydrogen ion and a helium atom and the multifold differential cross sections for the electronimpact ionization of hydrogen and nitrogen molecules are analyzed on the basis of numerical simulations. The Wannier law for the angular distribution of double ionization is demonstrated to be incorrect even at very low energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.