Abstract

In January 2017, collapses of the numerous roofs were reported due to excessive snowfall in many provinces of Turkey. In this study, the reasons behind the collapses of the steel roofs of 19 factory buildings were investigated. The steel roofs supported by the precast reinforced concrete columns indicated a similar collapse pattern to each other under the unexpected heavy snow loading. The failure mechanisms of the roofs under the snow loading were simulated numerically. Nonlinear finite element models of a typical industrial building were developed and analyzed under an incremental vertical loading that is identical to snow loading. As a result of the analysis, the vertical load carrying capacity of the roof system and the snow load level causing the collapse of roof were determined. The resulting snow load was compared with the snow load values provided by the code specifications. In addition, the collapse mechanism of the steel roof system was analytically determined and compared with the collapse modes observed in the field and the causes of the failure were evaluated. The failure mechanism and the buckling modes obtained from analyses were found very similar to those observed during the site inspections. The main reasons of the roof failures may be attributed to excessive amount of snow caused by climate change and discrepancy of designed project and as-built project due to lack of building inspection control during the construction of the buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.