Abstract

Sheep prion protein (PRNP) is the major host genetic factor responsible for susceptibility to scrapie. We aimed to understand the evolutionary history of sheep PRNP, and primarily focused on breeds from Turkey and Ethiopia, representing genome-wise ancient sheep populations. Population molecular genetic analyses are extended to European, South Asian, and East Asian populations, and for the first time to scrapie associated haplotypes. 1178 PRNP coding region nucleotide sequences were analyzed. High levels of nucleotide diversity driven by extensive low-frequency replacement changes are observed in all populations. Interspecific analyses were conducted using mouflon and domestic goat as outgroup species. Despite an abundance of silent and replacement changes, lack of silent or replacement fixations was observed. All scrapie-associated haplotype analyses from all populations also showed extensive low-frequency replacement changes. Neutrality tests did not indicate positive (directional), balancing or strong negative selection or population contraction for any of the haplotypes in any population. A simple negative selection history driven by prion disease susceptibility is not supported by the population and haplotype based analyses. Molecular function, biological process enrichment, and protein-protein interaction analyses suggested functioning of PRNP protein in multiple pathways, and possible other functional constraint selections. In conclusion, a complex selection history favoring excessive replacement changes together with weak purifying selection possibly driven by frequency-dependent selection is driving PRNP sequence evolution. Our results is not unique only to the Turkish and Ethiopian samples, but can be generalized to global sheep populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call