Abstract
Phosphorus (P) is an essential element for crop growth and it plays a critical role in agricultural production. Excessive P applications has become a serious concern in Chinese greenhouse vegetable production (GVP) systems. Nevertheless, P accumulation (legacy P) in GVP profile soils and its potential loss remain poorly documented. Hence, this study aimed to response this issue via paired collection of 136 soil samples (0–30, 30–60 and 60–90 cm depth) and 41 vegetable samples from both plastic greenhouses (PG) and solar greenhouses (SG) in Shouguang, Shandong province. Results showed that the annual input of P ranged from 772 to 2458 kg ha−1 for different vegetables through the whole growing season versus little vegetable P uptake (ranging from 47.8 to 155 kg ha−1). Results also revealed significant P accumulation in both SG and PG profile soils. Compared to arable soils (background soils), legacy P to the depth of 90 cm in PG and SG soils were 3.28 and 11.16 Mg P ha−1, respectively. The content of total P in PG and SG soils significantly increased with cultivation duration. The maximum environmental capacity of P in SG soils was 187 Mg ha−1, and the maximum number of years for safe planting was 38 yrs. After four years of cultivation, P loss would occur in these soils and the loss rate of P increased with cultivation duration. Opposite to PG soils, a potentially higher risk of P losses took place in SG soils. Our results also demonstrated that excessive P inputs driven by intensive agricultural practices dominated legacy P accumulation within the profile soils and its losses in GVP systems. Site-specific P managements, including improving P use efficiency, reducing further P surplus and reusing legacy P in soils, are urgently needed to minimize P loss. At the same time, the potential loss of subsoil P could not be neglected.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have