Abstract

The excess thermodynamic behaviour of self-associating binary mixtures of chainlike molecules is studied using modified statistical associating fluid theory, the so-called soft-SAFT equation of state. The chainlike molecules are described as Lennard-Jones spherical segments tangentially bonded together. The associating Lennard-Jones chains are modelled considering additional embedded off-centre square-well bonding sites. This model, which accounts explicitly for the most important microscopic features of real non-associating and associating chainlike molecules, such as repulsive and attractive forces between chemical groups, the connectivity of the segments to form the chains and the specific interactions (association), is also solved using the Monte Carlo molecular simulation technique. Comparisons between theoretical predictions and simulation results for selected mixtures are made in order to assess the adequacy of the theory in predicting excess properties. Agreement between simulation and soft-SAFT predictions indicates that the theory is able to provide a good description of the major excess properties. The theory is used also to study the effect of the molecular parameters on the excess properties of self-associating binary mixtures, with particular emphasis on the effect of association (including the bonding energy and number of associating sites) and chain length. The thermodynamic behaviour of these systems is governed by a delicate interplay between two important effects: the bond breaking of the structure formed by the associating molecules and the interstitial accommodation of the non-associating chains within the branched multimeric structure of the associating fluid. The theory is able to explain qualitatively the most salient features of the excess properties in real systems, including positive, negative and sigmoidal shape behaviour. After an in depth analysis of the effect of the association and chain length, an application of soft-SAFT that includes some quantitative comparisons with experimental excess volumes for n-alkane + 1-alcohol binary mixtures is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call