Abstract

The origin of 180W excesses in iron meteorites has been a recently debated topic. Here, a suite of IIAB iron meteorites was studied in order to accurately determine the contribution from galactic cosmic rays (GCR) and from potential decay of 184Os to measured excesses in the minor isotope 180W. In addition to W isotopes, trace element concentrations (Re, Os, Ir, Pt, W) were determined on the same samples, as well as their cosmic ray exposure ages, using 36Cl–36Ar systematics. These data were used in combination with an improved model of GCR effects on W isotopes to correct effects resulting from neutron capture and spallation reactions. After these corrections, the residual 180W excesses correlate with Os/W ratios and indicate a clear contribution from 184Os decay. A newly derived decay constant is equivalent to a half-life for 184Os of (3.38 ± 2.13) × 1013 a. Furthermore, when the data are plotted on an Os–W isochron diagram, the intercept (ε180Wi = 0.63 ± 0.35) reveals that the IIAB parent body was characterized by a small initial nucleosynthetic excess in 180W upon which radiogenic and GCR effects were superimposed. This is the first cogent evidence for p-process variability in W isotopes in early Solar System material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.