Abstract

Carbon Quantum dots (CQDs) are widely studied because of their good optical and electronic characteristics and because they can easily generate photocarriers. Nitrogen-doped CQDs (NCQDs) may exhibit improved hydrophilic, optical, and electron-transfer properties, which are conducive to photocatalytic hydrogen evolution. In this paper, NCQD-modified ZnS catalysts were successfully prepared. Under the irradiation of the full spectrum, the H2 evolution rate of the optimal catalyst 0.25 wt % NCQDs/ZnS achieves 5.70 mmol g-1 h-1, which is 11.88, 43.84, and 5.14 times the values of ZnS (0.48 mmol g-1 h-1), NCQDs (0.13 mmol g-1 h-1), and CQDs/ZnS (1.11 mmol g-1 h-1), respectively. Furthermore, it shows good stability, indicating that the modification of NCQDs prevents the photocorrosion and oxidation of ZnS. The enhanced performance is due to NCQD loading, which promotes the separation of photogenerated carriers, optimizes the structures, and increases the specific surface area. This work highlights the fact that NCQD-modified ZnS may afford a new strategy to synthesize ZnS-based photocatalysts with enhanced H2 production performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.