Abstract

Let R be a hyperbolic Riemann surface and W an open subset of R with ∂W piecewise analytic. Denote by the space of Dirichlet finite Tonelli functions on R and by π the harmonic projection of . Consider the relative HD–class on W, HD(W;∂W) = {u∈ │ u │ W∈HD(W) and u │ R\W = 0}. The extremization operation μis the linear mapping of HD(W;∂W) into HD(R) defined by μ. Since π preserves values of functions at the Royden harmonic boundary, the maximum principle implies that μis an order preserving injection and that Mμ is an isometry with respect to the supremum norms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.