Abstract
Utilising cosmic-ray neutron probes is a relatively new approach in obtaining larger area soil moisture and various operational monitoring networks have been established worldwide utilising this technology to measure operationally this parameter. One such network located in the United Kingdom (UK) is the Cosmic-ray Soil Moisture Observing System, so-called COSMOS-UK, established in 2013. The present study aims at investigating the true footprint and the variations within the footprint detectable area at the COSMOS-UK sites using as a case study one such site located in Riseholme, UK. At the selected experimental site extensive fieldwork was conducted in July 2017 that allowed examining the agreement among the soil moisture data retrieved by the Time Domain Transmissometer (TDT) sensors and the corresponding estimates from the COSMOS-UK network station probe. The COSMOS-UK site footprint was compared using GPS-aided information from ground instrumentation, assisted by drone imagery acquisition and the implementation of geospatial interpolation methods in a Geographical Information System (GIS) environment. Altogether, this information was used for assessing the soil moisture footprint extent from the COSMOS-UK site. The COSMOS-UK station footprint was representative for an area shorter in size than the alleged footprint of 600 m diameter, as generally proposed in various relevant investigations. The COSMOS network slightly overestimated soil moisture content measured by the TDT sensor probes installed in the area. Our study findings although concern specifically the studied experimental site contribute towards efforts aiming at assessing the COSMOS-UK soil moisture measurement footprint showcasing the added value of geospatial analysis in this direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.