Abstract

This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call