Abstract

Motor imagery (MI) and physical practice (PP) have been seen as parallel processes that can drive acquisition of motor skills. Emerging evidence, however, suggests these two processes may be fundamentally different, whereby MI-based motor skill acquisition relies more on effector-independent encoding of movement relative to PP. This alternate view is supported by evidence where real and virtual lesions to brain areas involved in visuospatial processing impair MI-based skill acquisition, and via behavioural studies showing perceptual, but not motor, transfer impairs skill acquisition via MI whereas this effect is reversed in PP. This study further investigated the degree to which MI utilizes effector-independent encoding of movement by investigating the role of the supplementary motor area (SMA), an area involved in perceptual to motor transformations, in MI-based motor skill acquisition. Sixty-four participants completed a serial reaction time paradigm following assignment to one of four groups based on training modality (MI or PP) and stimulation type (sham stimulation or continuous theta burst stimulation to inhibit the SMA). Faster reaction times (RTs) to elements of a repeated sequence in comparison to randomly generated elements indicated that sequence-specific learning occurred. Learning occurred in both PP and MI, with the magnitude of learning significantly smaller in MI. Inhibitory stimulation impaired learning in both modalities. In the context of a framework that distinguishes effector-independent and -dependent components of learning, these findings indicate the SMA plays a role in developing motor chunks in both PP and MI facilitating effector-independent learning in both modalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call