Abstract
ABSTRACTA recent alternative to standard pixel-based classification of remote-sensing data is region-based classification, which has proved to be particularly useful when analysing high-resolution imagery of complex environments, such as urban areas, or when addressing noisy data, such as synthetic aperture radar (SAR) images. First, following certain criteria, the imagery is decomposed into homogeneous regions, and then each region is classified into a class of interest. The usual method for region-based classification involves using stochastic distances, which measure the distances between the pixel distributions inside an unknown region and the representative distributions of each class. The class, which is at the minimum distance from the unknown region distribution, is assigned to the region and this procedure is termed stochastic minimum distance classification (SMDC). This study reports the use of methods derived from the original SMDC, Support Vector Machine (SVM), and graph theory, with the objective of identifying the most robust and accurate classification methods. The equivalent pixel-based versions of region-based analysed methods were included for comparison. A case study near the Tapajós National Forest, in Pará state, Brazil, was investigated using ALOS PALSAR data. This study showed that methods based on the nearest neighbour, derived from SMDC, and SVM, with a specific kernel function, are more accurate and robust than the other analysed methods for region-based classification. Furthermore, pixel-based methods are not indicated to perform the classification of images with a strong presence of noise, such as SAR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.