Abstract

The present investigation is set to evaluate the nanofluid thermogravitational convection within a Γ-shaped enclosure that consists of a local heater by the lattice Boltzmann method (LBM). In this study the Rayleigh number (103–106), cavity’s aspect ratio (0.2–0.6), nanofluid solid volume fraction (0–0.05), height and location of the heater on the liquid circulation and heat transfer parameters examined with respect to the Γ-shaped enclosure. The study is innovated in nature as it combines the nanofluid and the hot obstacle within the same Γ-shaped enclosure. The results of the conducted analyses indicate that the mean Nusselt number would increase as the Rayleigh number and nanoparticles concentration increased. This resulted in a reduction in the enclosure aspect ratio and increment in the obstacle’s height. The thermal transmission rate is highly affected by the obstacle’s position. Also, it is found that, when the heater is situated on the left border, the mean Nusselt number would be maximized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call