Abstract

As power system loading increases, larger blackouts due to cascading outages become more likely. The authors investigate a critical loading at which the average size of blackouts increases sharply to examine whether the probability distribution of blackout sizes shows the power tails observed in real blackout data. Three different models are used, including two simulations of cascading outages in electric power transmission systems. They also derive and use a new, analytically solvable model of probabilistic cascading failure which represents the progressive system weakening as the cascade proceeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.