Abstract

Networked infrastructures operated under highly loaded conditions are vulnerable to catastrophic cascading failures. For example, electric power transmission systems must be designed and operated to reduce the risk of widespread blackouts caused by cascading failure. There is a need for analytically tractable models to understand and quantify the risks of cascading failure. We study a probabilistic model of loading dependent cascading failure by approximating the propagation of failures as a Poisson branching process. This leads to a criticality condition for the failure propagation. At criticality there are power tails in the probability distribution of cascade sizes and consequently considerable risks of widespread catastrophic failure. Avoiding criticality or super criticality is a key approach to reduce this risk. This approach of minimizing the propagation of failure after the cascade has started is complementary to the usual approach of minimizing the risk of the first few cascading failures. The analysis introduces a saturating form of the generalized Poisson distribution so that supercritical systems with a high probability of total failure can be considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.