Abstract

Most rational expectations models involve equations in which the dependent variable is a function of its lags and its expected future value. We investigate the asymptotic bias of generalized method of moment (GMM) and maximum likelihood (ML) estimators in such models under misspecification. We consider several misspecifications, and focus more specifically on the case of omitted dynamics in the dependent variable. In a stylized DGP, we derive analytically the asymptotic biases of these estimators. We establish that in many cases of interest the two estimators of the degree of forward-lookingness are asymptotically biased in opposite direction with respect to the true value of the parameter. We also propose a quasi-Hausman test of misspecification based on the difference between the GMM and ML estimators. Using Monte-Carlo simulations, we show that the ordering and direction of the estimators still hold in a more realistic New Keynesian macroeconomic model. In this set-up, misspecification is in general found to be more harmful to GMM than to ML estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.