Abstract
AbstractX‐ray powder diffraction (XRPD) is an effective technique for identifying and quantifying mineral types in soil. However, few studies have compared quantitative values based on XRPD with those from conventional wet chemical methods (WCMs). Here, we determined the primary mineral content in artificial mineral mixtures and 79 agricultural soils from across Japan using WCMs and two XRPD‐based quantitative methods: the mineral intensity factor (MIF) and the full‐pattern summation (FPS) methods performed with the powdR package for R. For artificial mixtures, the accuracy of mineral content determination (i.e., micas, quartz, K‐feldspar, and plagioclase) followed the order: WCMs > FPS > MIF. For Japanese agricultural soils, the contents of each mineral were highly similar between WCMs and FPS, based on mean absolute differences and correlation coefficients. Alternatively, MIF displayed lower similarities with WCMs, likely due to preferred orientation and peak shift or overlap issues. Using the FPS method, the mica and amorphous phase contents were positively and significantly correlated with nonexchangeable K content and cation exchange capacity, respectively. Additionally, the plagioclase content was negatively and significantly correlated with clay content. Thus, the powdR‐based FPS method is recommended for determining the mineral composition of soils, as it allows for a clearer and more quantitative demonstration of the relationship between individual minerals and soil properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.