Abstract

An in vitro jaw-attached brainstem preparation was developed to investigate the relationship between jaw opener and closer muscle activity during chemically induced rhythmical jaw movements in neonatal rats. In the majority of preparations examined, where a defined region of brainstem was isolated and the neuronal innervation of the jaw opener and closer muscles was left intact, bath application of the excitatory amino acid agonist N -methyl-D,L-aspartate (NMA, 20-40 muM) in combination with bicuculline (BIC 10 muM), a GABAA antagonist, produced rhythmical electromyogram (EMG) activity in jaw opener and closer muscles, bilaterally, in conjunction with rhythmical jaw movements. Low concentrations of NMA (20 muM) in combination with BIC produced temporally coordinated activity between the jaw opener and closer muscles, ipsilaterally. With higher doses of NMA (40 muM), each muscle group exhibited bursting, but temporal coordination between them was difficult to establish. Similarly, NMA application in combination with the glycine antagonist strychnine (STR, 10 muM), also produced rhythmical EMG activity from both opener and closer muscles, ipsilaterally, but showed no temporal coordination between the antagonist muscle pair. However, coordination of opener and closer muscle discharge could be restored by the addition of BIC to the bath. We suggest that there exist separate, but coordinated, rhythm generator circuits for opener and closer motoneuronal discharge located in close proximity to the trigeminal motor nucleus and under GABAergic control for production of temporal coordination between rhythmogenic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call